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Abstract 

Health insurance plans often differ in coverage levels and the combinations of cost-sharing 
attributes to achieve that level. In this paper, I show that the proliferation of plan designs 
can result from distortion under asymmetric information. Though optimal risk protection 
requires concentrating coverage in large loss states (i.e., straight-deductible plans), low-
risk types signal by sorting into plans with more coverage for smaller losses. Standardizing 
plans to vary only along a single dimension may exacerbate welfare loss from asymmetric 
information. Consistent with the model, I show that a large variation in plan designs exists 
in the ACA federal exchange and that straight-deductible plans attract individuals with 
significantly higher ex-post medical spending and ex-ante risk scores. I calibrate the 
potential welfare effects of standardizing plan designs in the ACA when asymmetric 
information and consumer confusion exist. JEL Codes: D82, G22, I13. 
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There is a growing policy debate on why and when to offer choices in insurance 

markets. One area of policy attention is the design of health insurance plans’ cost-sharing 

attributes. A typical health insurance plan often has a deductible, coinsurance rate, 

maximum out-of-pocket, etc. The combination of these cost-sharing attributes leads to 

vertically and horizontally differentiated contracts: plans differ in their coverage level 

(fraction of losses covered) and their cost-sharing designs to achieve that coverage level. 

Motivated by findings that consumer confusion is prevalent (Abaluck and Gruber 2011, 

2023; Bhargava, Lowenstein, and Sydnor 2017), some health insurance markets choose to 

simplify plan choices into only vertically ranked choices. For example, in the Netherlands 

and Switzerland’s health insurance markets, plans are vertically ranked by the deductible 

level.1 In some state-based ACA exchanges (e.g., California), a single design is allowed 

per coverage level. Whether these regulations improve efficiency depends on how 

consumers evaluate and sort along different designs. If more complex cost-sharing 

attributes provide financial value to certain individuals, removing them may reduce social 

surplus. 

In this paper, I develop a conceptual framework to show that the proliferation of plan 

designs can result from distortion under asymmetric information. The model setup follows 

Rothschild-Stiglitz (1978), where insurers use different cost-sharing rules to screen 

individuals with unknown risk types. Two key differences exist between my model and 

previous models: first, I allow individuals to have multiple loss states, a common feature 

in health insurance markets. Second, insurers offer plans with multiple cost-sharing 

attributes. My model puts no restriction on the cost-sharing designs: contracts vary by the 

covered losses in each state and may not be vertically ranked. I also assume plans have 

fixed, positive loading. 

My model predicts that different risk types sort into different cost-sharing designs 

under asymmetric information. In a Rothschild-Stiglitz style separating equilibrium, the 

high-risk type sorts into their first best plan. Given positive loading, the first-best plan for 

the high-risk type is less than full insurance. Optimal risk protection requires concentrating 

 
1 In the Netherlands health insurance markets, plans have a single deductible and no coinsurance rates, 
making plans vertically ranked by the deductible level. In the Switzerland health insurance market, plans are 
vertically ranked by six deductible levels, followed by 10% coinsurance rates and a common cap of the out-
of-pocket co-insurance amount. 
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coverage in larger loss states, so such a plan has a straight-deductible, a classic result from 

Arrow (1963). Under the straight-deductible plan, individuals pay full losses below the 

deductible and are fully insured once they reach the deductible level. The low-risk type 

distorts their coverage to avoid pooling with the other type. Asymmetric information 

creates a force that pushes lower-risk consumers to choose plan designs with more 

coverage for smaller losses (in the form of coinsurance and lower deductible) while 

forgoing coverage on larger losses (in the form of higher MOOP).2  In summary, the 

equilibrium plan desired by the high-risk type has a straight-deductible design, while the 

plan desired by the low-risk type has a lower deductible, some coinsurance, and a higher 

MOOP. I demonstrate that this theoretical prediction holds both in an unregulated 

competitive separating equilibrium and regulated markets with perfect risk adjustment.  

My model predicts that restricting plan designs to be vertically ranked may create large 

welfare losses. In unregulated competitive markets, plan design variation—specifically, 

the existence of plans with low deductibles and high MOOP—helps sustain a more efficient 

separating equilibrium. When consumers can sort along only one dimension of cost-sharing 

(i.e., deductibles), low-risk individuals sacrifice substantially more coverage to avoid 

pooling with higher-risk individuals. When there is perfect risk adjustment, restricting 

plans to be only straight-deductible plans also reduces the surplus of the low-risk type. 

However, because under risk adjustment, the marginal costs of insurance to the individual 

might differ from the social costs, the impacts on the overall social surplus are ambiguous.  

In the second part of the paper, I examine the empirical relevance of sorting by plans 

launched in the Affordable Care Act (ACA) Federal Exchange (healthcare.gov), a market 

with risk-adjustment regulations. I combine publicly available data on the cost-sharing 

attributes, premiums, enrollment, and claims costs for plans launched between 2014 and 

2017 in this market. The ACA Federal Exchange organizes plans into four “metal tiers” 

based on the level of coverage they provide for a benchmark average population: Bronze 

(60%), Silver (70%), Gold (80%), and Platinum (90%). Within these tiers, insurers have 

 
2 The sorting result relies on the insight that low-risk individuals signal themselves by accepting less coverage 
in the states they are less likely to experience. This insight is also documented by theoretical works studying 
other selection markets, including the English annuity markets (Rothschild 2007; Finkelstein, Poterba, and 
Rothschild, 2009) and bundled coverage for property and casualty insurance (Crocker and Snow, 2011).  
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significant latitude in designing the cost-sharing attributes of their plans in different 

combinations. 

I use this empirical setting to examine two predictions from the model. First, in a market 

with heterogeneity in risk distributions and limited regulation in plan designs, there will be 

a proliferation of plans with different cost-sharing designs. Indeed, a large variation exists 

in plan designs in the ACA Exchange. For example, the within-county variation in the 2017 

Silver deductible is more than $3,000 for half of the counties. Though previous models can 

also explain the variation in coverage levels, my model helps rationalize the fact that there 

are often multiple cost-sharing designs within and across coverage levels.  

Second, variation in plan design creates room for sorting by risk type in the ACA 

market. My theoretical model predicts that plans with straight-deductible designs will be 

attractive to those with average to above-average risk but unattractive to lower-risk 

consumers. Using plan-level claims costs and insurer-level risk transfer information, I find 

that individuals enrolled in straight-deductible plans or similar designs have significantly 

higher ex-post medical expenditure, and insurers offering straight-deductible plans receive 

significantly larger risk transfers. Other confounding factors cannot fully explain these 

differences, including moral hazard, plans’ provider network, health savings account (HSA) 

eligibility, and geographic variation in plan availability.  

The theory and empirical analysis highlight how asymmetric information in risk types 

can explain the variation in plan designs. However, moral hazard is another rationale for 

the existence of non-straight-deductible plans. Theoretical research has shown that moral 

hazard can affect the optimal plan design, changing either the deductible level or the form 

of coverage (Zeckhauser 1970). Although models with moral hazard can help explain why 

plan designs are complex, they offer no ready explanation for the simultaneous existence 

of different plan designs. Empirically, my results using risk scores illustrate that the 

expenditure differences within an ACA coverage tier are mainly driven by selection and 

cannot be explained by moral hazard alone. Interesting dynamics might be at play when 

incorporating moral hazard responses into my model. Those considerations are outside the 

scope of this paper but could be a valuable direction for future research.   

In the last part of the paper, I calibrate the likely impacts of simplifying plans’ cost-

sharing into vertically-ranked options in the ACA Federal Exchange. Specifically, I 
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compare the market outcome under two menus: The actual 2017 plans offered in the ACA 

Exchange and a hypothetical choice set replacing all options with a straight-deductible plan 

of the same premium. I assume consumers have different risk distributions (calibrated 

using the Truven MarketScan data) and allow a fraction of “behavioral types” who 

randomly pick plans available in the choice set instead of choosing the plan maximizing 

their expected utility. The numeric exercise highlights the following trade-off: Restricting 

plans to be straight-deductibles reduces the chance that the behavioral high-risk types 

choose the wrong plan; however, that also removes valuable options for the low-risk types 

and might hurt them. The aggregate impact depends on the fraction of these different types.  

I estimate that when there are no behavioral types, the overall efficiency of the ACA 

would be only slightly higher ($10 per person per year) with regulated plan designs. The 

increase in the higher-risk types’ surplus because of the availability of straight-deductible 

plans is largely offset by the decrease in the lower-risk types’ surplus. However, when there 

are more behavioral types, the benefits to the higher-risk types dominate. This is because 

plans with high out-of-pocket limits create the possibility of a costly mistake for higher-

risk consumers, who are disproportionately adversely affected by such plans. I show that 

the efficiency benefits of regulating plan design in the ACA Exchange are significantly 

higher if a moderate share of consumers makes plan-choice mistakes. 

This paper contributes to a growing body of literature studying optimal menu design in 

selection markets. The existing literature examines why and when to offer vertical choices 

instead of a single mandated option, highlighting economic forces including adverse 

selection, moral hazard, and consumer confusion (Ericson and Sydnor, 2017; Marone and 

Sabety, 2022; Chade et al., 2022; Ho and Lee, forthcoming). All these works model plans’ 

financial attributes as vertically ranked options.3 I supplement these works by highlighting 

an under-appreciated consequence of adverse selection: when heterogeneity exists in the 

likelihood of incurring larger and smaller losses, simplifying plan designs into vertically-

ranked options puts restrictions on the market equilibrium and may reduce welfare. The 

 
3 Modeling contracts’ cost-sharing designs as vertical choices is sufficient when individual faces a binary 
loss, because plans can only differ by the fraction of losses covered for this single loss state. Such a setting 
is natural for some selection markets, e.g. unemployment insurance, while is an abstraction for other markets, 
e.g. health insurance market.   
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finding provides a new angle in evaluating the plan standardization policies in health 

insurance markets.  

More broadly, the paper contributes to the literature studying sorting by quality under 

asymmetric information (Veiga and Weyl, 2016). Existing literature documents, both 

theoretically and empirically, that adverse selection and contract distortion happen along 

dimensions like coverage generosity for different medical services and providers (Frank, 

Glazer, and McGuire 2000; Ellis and McGuire 2007; Shepard 2016), drug formulary 

(Lavetti and Simon 2014; Carey 2016; Geruso, Layton, and Prinz 2019), and overall plan 

generosity along a single dimension (Decarolis and Guglielmo, 2017). My paper highlights 

that a similar adverse selection force applies to the distortion in cost-sharing designs: the 

need for low-risk types to avoid pooling with the high-risk types creates demand for 

multiple plan designs. My model also explains sorting patterns in empirical findings in 

other markets.4 

Finally, my conceptual framework connects two long-standing theoretical literature: 

optimal risk protection with multiple loss states (Arrow 1963) and plan distortion under 

asymmetric information (Rothschild and Stiglitz 1976). My model extends Arrow (1963) 

by allowing for asymmetric information in loss distributions and extends Rothschild and 

Stiglitz (1976) by allowing for multiple loss states. The insight that asymmetric information 

distorts plans’ multi-dimensional cost-sharing attributes illustrates a new mechanism 

shaping the complex cost-sharing attributes in insurance markets. Previous studies find that 

moral hazard (Pauly 1968; Zeckhauser 1970), nonlinear loading factors or risk-averse 

insurers (Raviv 1979), background risk (Doherty and Schlesinger 1983), and liquidity 

constraints (Ericson and Sydnor 2018) can lead people to select into various types of plan 

designs. My model shows that adverse selection may also create a proliferation of plan 

designs. 

The rest of the paper is organized as follows: In Section 2, I lay out the conceptual 

framework and derive the conditions leading to design distortion. In Section 3, I examine 

 
4 Decarolis and Guglielmo (2017) documented that 5-star Medicare Part C plans increase MOOPs and 
decrease deductibles in the face of the pressure of worsening risk pools. This paper's conceptual framework 
predicts that the incentives to attract low-risk types can drive this movement towards non-straight-deductible 
plans. 
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the issue empirically using the ACA Federal Exchange data. In Section 4, I discuss the 

implications for regulating plan designs. The final section concludes. 

 

2 Conceptual Framework of Optimal Plan Design 
In this section, I present a stylized model of insurance markets where individuals have 

hidden information about their loss distributions. A key difference of my model from 

previous works (Rothschild and Stiglitz, 1976) is that I assume the losses are not binary 

and can take on multiple values. I show that under asymmetric information (community 

rating), individuals with different loss distributions sort into different cost-sharing designs. 

I then illustrate the welfare implications of policies removing such cost-sharing 

complexities and restricting to a single design. All proofs are in Appendix A. 

2.1 Model Setup 

The market consists of two risk types, 𝐿 and 𝐻 with equal population size. Each type 𝑖 

faces uncertainty in their medical expenditure 𝑥!  in state 𝑠. The realization of 𝑠 ∈ 𝑆 is 

uncertain, with state 𝑠 obtaining with probability 𝑓!" for individual 𝑖.  

I consider a general state-dependent insurance plan that captures the wide range of 

potentially complex plan designs consumers could desire. Specifically, an insurance plan 

is defined as a function mapping loss states to non-negative real number: 𝒍:	𝑠 → 𝑅#$, where 

𝑙! ≡ 𝑙(𝑠) is the value of the function evaluated at 𝑠, and 𝑙! represents the insurer payment 

in state 𝑠. 𝑙! satisfies the condition 0 ≤ 	 𝑙! ≤	𝑥!.  

DEFINITION 1 (Straight-Deductible Plan):  A straight-deductible plan with a 

deductible of 𝑑 is defined as: 

𝑙(𝑥!) = 6 0, 𝑖𝑓	𝑥! ≤ 𝑑,
𝑥! − 𝑑, 𝑖𝑓	𝑥! > 𝑑. 

Under such plans, individuals pay full losses out-of-pocket below the deductible level and 

get full insurance once the losses reach the deductible level. Full insurance is a straight-

deductible plan with zero deductible. All other plans are non-straight-deductible plans. 

The financial outcome (consumption) after insurance in each loss state is 𝑤" − 𝑥! +

𝑙! − 𝑝(𝒍) , where 𝑤"  is the non-stochastic initial wealth level and 𝑝(𝒍)  represents the 

premium of plan 𝒍. I assume individual 𝑖	has a concave utility function 𝑢" over the financial 
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outcome of each loss state: 𝑢"% > 0, 𝑢"%% < 0. Individuals are offered a menu of contracts 

𝐶	and choose the plan maximizing their expected utility: 

𝑚𝑎𝑥
𝒍∈(

C 𝑢"(𝑤" − 𝑥! + 𝑙!
!

− 𝑝(𝒍))𝑓!" . (1) 

2.2 Model Predictions  

We now turn to predictions from the model. I consider three cases: symmetric 

information, asymmetric information with no risk adjustment, and asymmetric information 

with perfect risk adjustment.  

Case 1 - Symmetric Information/Risk-Based Pricing 

For this single-risk-type case, I drop subscript 𝑖 for simplicity of exposition. Assume 

perfectly competitive insurers set premiums as a linear function of the expected covered 

expenditure:  

𝑝(𝒍) 	= 𝜃C 𝑓!𝑙!
!

+ 𝑐. (2) 

where 𝜃 ≥ 1 is a proportional loading factor, and 𝑐 ≥ 0 is a fixed loading factor. Suppose 

further that all possible insurance contracts are available and priced this way.  

PROPOSITION 1. Under risk-based pricing, for any fixed loading factors, the 
contract maximizing expected utility is a straight deductible plan.  

The result is a direct application of Arrow (1963) and Gollier and Schlesinger (1996). 

When there is no loading, the optimal contract will be full insurance. When there is positive 

loading, the expected-utility-maximizing contract has some cost-sharing. Proposition 1 

states that such a contract has a straight-deductible design: optimal risk protection requires 

that coverage is concentrated on larger losses. 

Case 2 - Asymmetric Information/Community Rating  

Now consider the case where there are two risk types (𝐿 and 𝐻) in the market, and 

insurers cannot distinguish 𝐿 from 𝐻 ex-ante, or they cannot charge different premiums for 

the same plan because of community rating regulations. The plan premiums are a 

mechanical function of the expected covered losses given who sort into that plan, plus 

loading.5 

 
5 The assumption rules out equilibrium concepts with cross-subsidization among plans (as in Spence 1978). 
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A key component of the model is how 𝐿 and 𝐻 are defined. It is not the purpose of the 

model to fully characterize that equilibrium. Instead, I consider a potential separating 

equilibrium similar to Rothschild and Stiglitz (1976), where one risk type (𝐻) gets the first-

best contract under symmetric information, and the other type (𝐿) distorts their coverage 

to prevent the higher-risk type from pooling with them. 𝐻 and 𝐿 types are defined such that 

the incentive compatibility constraint is constrained for 𝐻 and slack for 𝐿. In equilibrium, 

𝐻 sorts into the first-best plan, which, according to Proposition 1, is a straight-deductible 

plan. 𝐿 chooses the incentive-compatible plans that maximize the expected utility. I further 

assume that both types face multiple loss states, and there exist at least two non-zero, 

positive coverage loss states, 𝑠 and 𝑡, where 𝑥! ≠ 𝑥) and 𝑓!* 𝑓!+⁄ ≠ 𝑓)* 𝑓)+⁄ .  

PROPOSITION 2. Among all incentive-compatible plans for 𝐻 , the one that 
maximizes the expected utility of 𝐿 has a non-straight-deductible design.  

The intuition can be illustrated starting from the first-best plan for 𝐿, which has a 

straight-deductible design. Such a plan will not be incentive compatible, however, because 

it is priced based on the loss distribution of 𝐿, and makes 𝐻 deviate. Therefore, 𝐿 needs to 

change their coverage to prevent pooling with 𝐻 . They could achieve this by either 

reducing coverage for larger loss states or reducing coverage for small loss states. Doing 

the former would make the plan less attractive to 𝐻 since larger losses are more likely to 

happen for 𝐻. Sacrificing coverage for large losses and transferring to coverage for small 

losses is less problematic for 𝐿, though, since most of their losses are likely to be small. 

Case 3 - Asymmetric Information/Community Rating with Perfect Risk Adjustment 

In many markets, regulators impose risk adjustment regulations to flatten premium 

differences among plans and to remove screening incentives for insurers. I consider a 

market with perfect risk adjustment where the premium reflects the market average risk 

and is a linear function of the expected costs obtained if both risk types enroll in the plan.6 

This setting approximates the regulatory environment in many US health insurance markets, 

including Medicare Advantage, Medicare Part D, and the ACA Exchange. 

 
6 This definition is a special case of Einav, Finkelstein and Tebaldi (2018), which defines risk adjustment as 
a transfer 𝑟!  to the insurer if individual 𝑖 enrolls in the plan. My setting is equivalent as setting 𝑟!  as the 
difference between the cost of insuring that type, 𝜃 ∑ 𝑓"!𝑙"" , and the market average cost. Geruso et al. (2023) 
also uses the same formula to define perfect risk adjustment.  
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Under perfect risk adjustment, the premium is: 

𝑝(𝒍) 	=
𝜃
2 LC 𝑓!*𝑙!

!
+C 𝑓!+𝑙!

!
M + 𝑐. (3) 

To obtain the sorting result, I assume that 𝐻  and 𝐿  have loss distributions with 

monotone likelihood ratio property in losses: for any two loss states 𝑠 and 𝑡 where 𝑥) >

𝑥!, it is also true that ,#
$

,#%
> ,&

$

,&%
. Further, assume that there exist at least two non-zero loss 

states for both types. I also assume that the feasible plans imply non-decreasing out-of-

pocket spending when the loss increases: 𝑥! − 𝑙! ≤ 𝑥) − 𝑙) , ∀𝑥! < 𝑥). This is a common 

feature for health insurance plans because the losses are cumulative within a year.  

PROPOSITION 3. Under perfect risk adjustment, 𝐻 sorts into a straight-deductible 
plan; 𝐿 sorts into a non-straight-deductible plan. 

Under perfect risk adjustment, the premiums are effectively “shared” between the two 

types. The marginal cost of reducing out-of-pocket spending depends on the spending of 

both types. Ideally, both types want to have the premium covering more of their own 

spending than the spending of the other type. The utility-maximizing plans for each type 

thus direct more coverage into states where that type is relatively more likely to experience. 

Since 𝐻 is more likely to experience larger losses, they sort into straight-deductible plans, 

which offer full coverage for large losses. The opposite is true for 𝐿. 

The proposition can be extended to a scenario where both risk types are choosing from 

plans with the same premium: 

COROLLARY 1. Under perfect risk adjustment and among all plans have the same 
premium, 𝐻  sorts into a straight-deductible plan; 𝐿  sorts into a non-straight-
deductible plan. 

In summary, the complexity of plan designs can be motivated by multiple loss states 

and asymmetric information (community rating). Under perfect information, all types 

desire straight-deductible plans. Under asymmetric information, 𝐿  has an incentive to 

deviate to non-straight-deductible designs.  

2.3 Implications for Plan Standardization Regulation 

The sorting result presented in 2.2 has implications for evaluating the welfare impacts 

of the plan standardization policy. To illustrate, I first define the welfare notion as follows. 
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The consumer surplus of individual 𝑖 choosing plan 𝒍 , 𝑐𝑠"- , is defined as the certainty 

equivalent of choosing plan l relative to no loss: 

C𝑢"(𝑤" − 𝑥! + 𝑙! − 𝑝(𝒍))𝑓!"
!

= 𝑢"(𝑤" + 𝑐𝑠"-). (4) 

The social surplus of individual 𝑖 choosing plan 𝒍, 𝑠𝑠"- is defined as: 

C𝑢"O𝑤" − 𝑥! + 𝑙! − 𝜏"(𝒍)Q𝑓!"
!

= 𝑢"(𝑤" + 𝑠𝑠"-), (5) 

where 𝜏"(𝒍) = 𝜃∑ 𝑓!𝑙!! + 𝑐, is the social cost of offering plan 𝒍 to individual 𝑖. Note that 

when there is no risk adjustment, 𝜏"(𝒍) = 𝑝(𝒍), and 𝑐𝑠"-  is the same as 𝑠𝑠"- . Under risk 

adjustment, this relation is, in general, not true. The overall social surplus is defined as the 

sum of 𝑠𝑠"- for all individuals in the market. 

First, consider a plan standardization regulation that restricts all plans to vary along a 

single dimension and are vertically ranked. A natural policy is to restrict plans to straight-

deductible plans (as in the Netherlands health insurance markets). Under asymmetric 

information, H sorts into a straight-deductible plan, so they are unaffected. However, any 

straight-deductible plan 𝐿 chooses under the design regulation makes them strictly worse 

off. When there is no risk adjustment, social surplus coincides with consumer surplus, 

implying a decrease in social surplus. Under perfect risk adjustment, however, exactly how 

the social surplus will change is ambiguous: perfect risk adjustment imposes an externality 

in the pricing because the marginal costs of the extra cost-sharing are shared by the other 

risk type. Restricting to straight-deductible plans may or may not reduce such externality, 

so the social surplus may or may not improve.  

The social and consumer losses from such a regulation can be sizable. Consider the 

following numeric example. Two risk types are constructed using the 2013 Truven 

MarketScan data, where 𝐿 has a mean spending of $1,843 (SD=$7,414), and 𝐻 has a mean 

spending of $7,537 (SD = $22,444). I assume both types have CARA utility function and 

a risk aversion level of 0.0004. I then calculate the equilibrium plans under 1) risk-based 

pricing and 2) community rating with no risk adjustment. The details of the calculation are 

in Appendix B.  

Table 1 shows the numeric example. Under community rating, 𝐿  sorts into a 

coinsurance plan with a 23% self-paid coinsurance rate, which causes a $561 welfare loss 
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relative to the first-best plan. It happens to have the same fraction of losses covered as the 

first-best plan, so the welfare losses of community rating purely come from the design 

distortion. Note that the equilibrium plans under no regulation are not vertically ranked: a 

constant coinsurance plan with 23% coinsurance rates offers more coverage for smaller 

losses than the straight-deductible plan with a deductible of $1,820.  

However, if 𝐿 is forced to choose a straight-deductible plan, they sort into one with a 

$13,154 deductible, which offers much less coverage and the surplus reduction is more 

than doubled. 

Table 1. Numeric Example: Community Rating and Design Regulation 

  Risk 
Type Plan % losses 

covered Surplus 

Risk-Based Pricing 
𝐻 Straight-deductible, 

deductible = $1,820 
82% / 

𝐿 Straight-deductible, 
deductible = $933 77% 0 

Community 
Rating and 

No Risk 
Adjustment 

No 
Regulation 𝐿 Constant coinsurance, 

coinsurance rate = 23% 77% -$561 

Straight-
Deductible 

Only 
𝐿 Straight-deductible, 

deductible = $13,154 23% -$1,256 

Note: Risk types constructed from Truven MarketScan data. “Risk-based pricing” refers to the 
scenario where each plan is priced based on the risk type choosing it, and the premium for the same 
plan can vary for different risk types. “Community rating” refers to the scenario in which insurers 
cannot vary premiums for the same plan for different risk types, and the premium is a linear function 
of the expected spending of the risk type choosing the plan. “Straight-deductible only” refers to the 
scenario in which only straight-deductible plans are available. Surplus refers to either consumer or 
social surplus, as they are the same in this case. I rescale them so the value is the difference from 
the first-best plan. 

Second, consider a market with perfect risk adjustment. In the market, a coverage level 

is defined as the fraction of losses covered for the average population. Plans with the same 

coverage level thus have the same premiums under perfect risk adjustment. The market 

regulates that there can be at most one plan design within a coverage (premium) level, as 

in the case of the California ACA Exchange. Given two risk types, the regulation is optimal 

only when the specified design coincides with the socially optimal design for each type. 

Generally, it is not obvious whether such a policy will improve or reduce welfare.  
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Moreover, such a regulation may reduce consumer surplus under certain conditions. 

Suppose 𝐿 is more risk averse than 𝐻, such that under perfect risk adjustment, the plan 

desired by both types has the same premium. According to Proposition 3, however, the two 

types desire different plan designs. Table 2 shows a numeric example where, under perfect 

risk adjustment and no plan regulation, both types prefer plans with around $6,200 

premium under perfect risk adjustment, while only 𝐻 chooses a straight-deductible design. 

When this is the case, restricting to a single design per coverage level will at least make 

one of the risk types worse off than if all designs are allowed. 

Table 2. Numeric Example: Community Rating and Perfect Risk Adjustment 

  Risk 
Type 

Risk Aversion 
Level Plan Premium 

Community Rating 
and Perfect 
Adjustment 

𝐻 0.00005 Straight-deductible, deductible = 
$1,272 $6,193 

𝐿 0.002 
Deductible = $ 700, 10% 

coinsurance after deductible, 
MOOP = $3,100. 

$6,152 

Note: Risk types constructed from Truven MarketScan data.  

In summary, restricting plans to be vertically ranked often reduces certain risk types’ 

surplus. Besides, it may also reduce the overall social surplus. These regulations are often 

motivated by consumer confusion concerns, and the rationale is that restricting to simpler 

design makes it easier for consumers to choose. My conceptual framework suggests that a 

complete evaluation of such policies depends on the tradeoff of consumer confusion and 

welfare loss from a simplified menu. An open question is to what extent the sorting force 

matters in reality, which I now discuss in Section 3. 

 

3 Empirical Analysis in the ACA Market 
There are two key predictions from the conceptual framework. First, in insurance 

markets with community rating, different risk types prefer different plan designs. Second, 

high-risk types prefer plans concentrating coverage in larger losses (i.e., straight-deductible 

plans). In comparison, the low-risk types prefer plans with more coverage for smaller losses 

(i.e., non-straight-deductible designs.) In this section, I show the empirical relevance of the 

theory by illustrating that these predictions are consistent with the plan offering and sorting 
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pattern observed in the ACA Federal Exchange. The ACA Federal Exchange is particularly 

suitable for studying plan design variation because the market allows insurers considerable 

freedom to offer different plan designs. 

3.1 Institutional Background 

The Affordable Care Act Exchange (the Exchange henceforth) was launched in 2014. 

Private insurers can offer comprehensive health insurance plans, and the federal 

government provides subsidies for certain low-income consumers who purchased plans. 

The Exchange regulates the actuarial value (AV) of plans, defined as the fraction of losses 

covered for the average population, but leaves insurers with latitude to offer a range of 

different plan designs. The Exchange has regulations on the market-average AV: Plans can 

only have a population-average AV of around 60%, 70%, 80%, and 90% and are labeled 

as Bronze, Silver, Gold, and Platinum plans, respectively. The Exchange also requires 

plans to have an upper limit on out-of-pocket spending ($7,150 in 2017). Some state 

Exchanges further regulate the plan designs.7 Insurers are otherwise free to offer any cost-

sharing attributes. Each state can either join the Federal Exchange or establish its own state 

exchange. I focus on plans launched via healthcare.gov, including the federally 

administered Individual Exchange and state exchanges operated via healthcare.gov. On this 

platform, insurers can offer any design satisfying the AV regulation and the MOOP limit.8 

The list of states in the sample is in Appendix Table C1. 

ACA regulations also limit insurers’ ability and incentive to do risk screening. The 

regulators calculate risk scores for enrollees and transfer money from insurers with a lower-

cost risk pool to insurers with a higher-cost risk pool to equalize plan costs across insurers. 

Further, there is a single risk pool pricing regulation: the premiums of plans offered by the 

same insurer will be set based on the overall risk pool of that insurer, not the risk of 

individuals enrolled in each plan. Third, community rating limits insurers’ ability to set 

premiums based on individual characteristics. Premiums can only vary by family 

composition, tobacco use status, and (partially) by age group.  

 
7 Regarding cost-sharing flexibility, insurers in Connecticut, the District of Columbia, Massachusetts, New 
York, Oregon, and Vermont must offer standardized options. They can offer a limited number of non-
standardized options within a metal tier. California requires all insurers to offer only standardized plans (one 
per tier). 
8 Plans launched in states using healthcare.gov are still subject to each state’s insurance regulation. For 
example, the essential health benefits that a plan must cover may differ across states.   



14 
 

3.2 Data and Sample 

I use the Health Insurance Exchange Public Use Files from 2014 to 2017. This dataset 

is a publicly available dataset of the universe of plans launched through healthcare.gov. I 

define a plan based on the plan ID administered by CMS, which is a unique combination 

of state, insurer, cost-sharing attributes, provider network, drug formulary, and covered 

benefits. For each plan, I observe its financial attributes (deductibles, coinsurance rates, 

copays, MOOPs, etc.), premium (which varies at the plan-rating area level), and enrollment 

numbers in that plan (at the plan-state level). I focus on the 2014-2017 year for the main 

analysis, but the results are similar for other years.  

I study risk sorting using the Uniform Rate Review Data from 2016 to 2019.9 The data 

include average premium and claim cost information at the plan level for 50% of plans and 

insurer-level claim costs and risk transfer information for 75% of the insurers.10 For the 

rest of the insurers, I match almost all of them in the Medical Loss Ratio filings, another 

insurer-level dataset reporting premium and claim costs, but not risk transfers. I use the 75% 

insurers as the baseline because all variables of interest are available, and I use the Medical 

Loss Ratio filings as robustness checks. Appendix Table C2 summarizes the data sources 

used in the empirical analysis. 

I focus on Bronze, Silver, Gold, and Platinum plans. Catastrophic plans are dropped 

from the analysis because they have no officially reported AV and are unavailable to most 

consumers. Each Silver plan has three cost-sharing reduction variations available to the 

low-income population. These plans have the same premium as the standard Silver plan 

and a higher AV. In the plan design analysis, I use the cost-sharing characteristics of the 

standard Silver plan. In studying the sorting pattern, I label the straight-deductible design 

based on the standard Silver plan because the straight-deductible design is consistent across 

the standard plans in almost all cases, and the cost-sharing variations and the claim costs 

are reported for all variations.  

I study the cost-sharing features of a plan’s first-tier in-network coverage for essential 

health benefits. The utilization rate of the first-tier in-network coverage is 94.59% on 

 
9 The reports have a two-year lag, so the 2016 -2019 reports match the 2014-2017 plan information. 
10 The plan level information is incomplete because only plans with more than 10% premium increase are 
required to report, while the insurer level information is required for all insurers unless they exit the market. 
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average for the sample plans, and 99.47% of the total premium is contributed to cover the 

essential health benefits on average. I exclude preventive care because all plans must cover 

it with no cost-sharing. The resulting benefits in Appendix Table C3 are consistent with 

the list of the AV calculator, a tool created by CMS to compute the AV of each plan.11  

A straight-deductible plan is identified as one under which 1) all benefits are subject to 

the general deductible, 2) there is no coverage before hitting the deductible, and 3) there is 

no cost-sharing after the deductible. Screenshots of an example straight-deductible plan 

and a non-straight-deductible plan on the ACA Exchange are in Appendix Figure C1.  

3.3 Analysis of Plan Design Variations in the ACA Market 

The market is populated with both straight-deductible and non-straight deductible plans. 

Table 3 shows the market share of straight-deductible plans over time. Take the year 2016 

as an example. There are around 4,000 unique plans offered in this market. Among them, 

13% are straight-deductible plans. In total, 9.7 million consumers purchased a plan in this 

market, and about 7.6% selected a straight-deductible plan.  

Table 3. Market Share of Straight-Deductible Plans 

year 
% plans that 
are straight- 
deductible 

Total 
number of 

plans 

Enrollment 
share in 
straight-

deductible plans 

Total 
number of 
consumers 

(mm) 
2014 10.48% 2,871 5.40% 5.57 

2015 9.58% 4,573 6.97% 9.22 

2016 12.99% 3,966 7.63% 9.71 

2017 11.14% 3,106 4.52% 9.00 
Note: The sample includes the universe of plans launched via healthcare.gov. The enrollment data 
of Silver plans represent four cost-sharing variations: The standard Silver plans and three cost-
sharing reduction plans (which are only available to lower-income households). I classify straight-
deductible for these plans based on the standard plan.  

Consumers also face substantial variation in plan designs within a metal tier. Figure 1 

shows the 2017 Standard Silver plans’ deductible distribution for counties with the top 25 

enrollment size via Healthcare.gov. In all these counties, consumers face over $2,500 

differences in the Silver deductibles. The large variation in plan design faced by a particular 

consumer is prevalent for many other counties and metal tiers. For example, an average 

 
11 Accessed from https://www.cms.gov/CCIIO/Resources/Regulations-and-Guidance/ 
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consumer faces Gold plans with MOOPs ranging by more than $2,000. Appendix Figure 

C2 shows the distribution of deductible and MOOP across all counties. 

Figure 1. Distribution of the 2017 Silver Deductible for the 25 Largest Counties 

 
Note: Data from the 2017 CMS Health Insurance Exchange Public Use Files. Counties are ranked 
by the enrollments via Healthcare.gov and included counties have enrollment numbers larger than 
50,000. Silver plans are standard Silver plans. The deductible refers to tier-one, in-network 
coverage for an individual, cumulative over a year. The circle in the center of the bar indicates the 
median, the lower and upper bounds of the bar indicate the 25th and 75th percentile and the lower 
and upper of the whiskers indicate the minimum and the max. 

The plan design variation implies significant variations in plans’ financial values to 

consumers within a coverage tier. To quantify, I evaluate each plan’s financial value for 

the average ACA individual with a CARA utility function with a risk-averse coefficient of 

0.0004 (Handel, 2013). I first apply the cost-sharing rules of all plans to this representative 

individual’s risk distribution and calculate the stochastic out-of-pocket spending, 𝑎, for 

each plan. I then calculate the risk premium 𝑅, using the following formula:  

𝐸[𝑢(𝑤 − 𝑎)] = 𝑢	(𝑤 − 𝐸(𝑎) − 𝑅), (6) 

where 𝑤 represents the wealth level, and 𝑢(∙) is the utility function. The risk premium 

represents the sure amount the individual needs to receive to be indifferent between 

enrolling in that plan and a full-insurance plan, when both are priced at their fair AV. It 

represents the risk protection of different designs (the smaller, the higher the value). 
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Straight-deductible plans have the lowest 𝑅, holding fixed 𝐸(𝑎) (Gollier and Schlesinger 

1996). The calculation details are in Appendix D. 

Figure 2. Risk Premium and Expected Covered Spending for 2017 Plans 

 
Note: The sample includes plans launched in the individual market via healthcare.gov. A plan is a 
unique combination of insurer, covered benefits, cost-sharing designs, drug formulary, provider 
network, and state. Plans launched in multiple rating areas or counties are only counted once. Cost-
sharing reduction plans and Catastrophic plans are excluded. The black solid line shows the lowest 
possible risk premium conditional on the expected spending level (achieved by straight-deductible 
plans) and does not represent actual plans. A dot might represent multiple plans if they have the 
same cost-sharing feature. The vertical lines show the targeted AV for each metal tier. Not all plans 
align with the vertical lines perfectly because the regulator allows for a two percent error margin 
and because of measurement error in my calculation. 

Figure 2 shows the risk premium and the expected covered spending for all plans in the 

four metal tiers in 2017. The four clusters represent the four metal tiers. A substantial 

difference in risk premium exists for a range of AV levels. For example, among plans in 

the Silver tier, which have an AV of around 70%, the smallest risk premium relative to full 

insurance is around $500 and is achieved by the straight-deductible plan (black line in 

Figure 2). In contrast, the largest risk premium for Silver plans is nearly $1,000 larger, 

originating from plans that have lower deductibles and MOOP closer to the maximum 

allowed by the regulation.  

3.4 Evidence of Sorting by Health into Different Plan Designs  

The existence of the plan design variation may create room for selection. The 

theoretical analyses in Section 2 suggest that straight-deductible plans are more attractive 
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to the higher-risk types. An ideal test for the sorting pattern requires observing the full 

distribution of individuals enrolled in different plans. Unfortunately, I don’t have that 

information for all plans available in the ACA Exchange. Instead, I focus on testing the 

first moment of the loss distribution. I perform two sets of analyses: first, I compare the 

plan-level average total claim costs per member per month between straight-deductible and 

other designs. Second, I examine the differences in insurer-level risk transfers among those 

offering straight-deductible plans and the rest. The measure represents ex-ante risk scores 

of plans. 

3.4.1 Plan-Level Analysis 

A comparison in unconditional means of the total medical expenditure illustrates a 

strong correlation between average medical spending and plan designs, consistent with the 

theoretical predictions on sorting. Figure 3 shows the average monthly total medical 

expenditure for straight-deductible plans and the other designs across the metal tiers. 

Straight-deductible plans have significantly higher medical expenditures than other plans. 

The difference is more than $400 per month for Silver and Gold plans.12  

The correlation between plan design and expenditure might be driven by other 

confounding factors, which I address using the regression model. First, given that only 

plans with an excessive premium increase are subject to report the claim information, the 

mean difference of the reported plan may not be representative. To address the concern, I 

leverage the fact that insurers are subject to the single risk pool requirement and will spread 

out unexpected medical expenditures of a particular plan among all plans offered, making 

all plans subject to reporting. In the plan-level regression, I include insurer-year fixed 

effects so that the differences in claims costs between different plan designs are identified 

based on the within-insurer-year variation.  

Second, the correlation might be driven by other plan characteristics. I first examine 

whether other plan attributes are correlated with straight-deductible design. Appendix 

Table C4 presents a balanced test of straight-deductible and other designs. I find that 

straight-deductible plans are not correlated with other plan attributes consumers might sort 

on, including plan types, whether having a national network, new or existing plan, offered 

 
12 The difference in the Bronze tier is smaller because the OOP-limit regulation limited the room for design 
difference. The market has few Platinum plans, so they are not shown in the graph. 
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to rural counties, etc. The only significant difference is that straight-deductible plans are 

more likely to have a health savings account (HSA), because these accounts require a high-

deductible, and straight-deductible plans have high deductibles in a metal tier. Given that 

individuals with greater health needs may prefer HSA, the correlation between HSA-

eligibility and straight-deductible may bias the difference away from zero. In the baseline 

regressions, I add HSA eligibility, dummies for plan type, and the service area fixed effects 

as control variables to address the concern. 

Figure 3. Average Total Expenditure per Member Month by Plan Design 

 
Notes: The graph shows the mean and 95% confidence interval of the total medical expenditure of 
plans launched through healthcare.gov in 2014-2017. Only plans with premium changes of more 
than 10% are reported in the Uniform Rate Review data. Such plans account for about 50% of the 
universe of plans launched.  

Finally, and most importantly, the differences in the ex-post expenditure may reflect 

ex-post moral hazard instead of selection. Moral hazard is likely a primary concern for the 

differences in the ex-post expenditure across metal tiers. To address the issue, I control for 

metal tier fixed effects and actuarial values.13 It is unclear whether straight-deductible 

designs imply more moral hazard than other designs within a metal tier. Straight-deductible 

plans have no coverage for small losses and may deter large expenditures because of that.  

 
13 The sorting into designs within a metal tier could either be driven by the fact that there is a negative 
correlation between risk aversion and risk levels, as illustrated in the numeric example in Table 2, or the 
sorting pattern conditional on coverage level, as stated in Corollary 1. 
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Table 4 column (1) shows the results with total medical expenditure per member per 

month as the dependent variable. On average, individuals enrolled in straight-deductible 

plans have significantly higher medical expenditures ($119 higher per month and $1,428 

annually) relative to the mean spending of $555 per month. Table 4, columns (2) and (3) 

show that premiums are similar for straight-deductible and other plan designs in the same 

metal tier. The little difference in premiums suggests that the single risk pool requirement 

is well enforced and blunts the pass-through of these selection differences to consumers.  

Table 4. Plan-Level Sorting Pattern 

  (1) (2) (3) 
 monthly total 

expenditure 
monthly premium 

  collected charged 

straight-deductible 118.52 2.11 0.72 
(21.70) (3.66) (1.59) 

N 7,842 7,842 72,829 
R2 0.55 0.85 0.73 

y-mean 554.74 397.04 265.6 
y-sd 382.28 120.56 93.05 

Controls AV, metal tier, network type, HSA-eligibility,  
insurer FE, year FE 

Fixed Effects service area FE rating area FE 

Note: Straight-deductible is a dummy variable indicating whether the plan has a straight-deductible 
design. The AV of a plan is the fraction of losses covered for the average population, which varies 
no more than four percentage points within a metal tier. Columns (1) and (2) include plans between 
2014 and 2017 with a premium increase of more than 10%. I dropped those reporting non-positive 
total expenditure or premium and plans with the top and bottom one percent of either value to avoid 
impact from extreme values. Each observation is a plan-state-year. The dependent variable in (1) 
is the average total medical expenditure per member month. The dependent variable in (2) is the 
average collected premium per member month. Column (3) includes all plans between 2014 and 
2017. The dependent variable is the per-month premium of the single coverage for a 21-year-old 
non-tobacco user. Since premium varies by rating area, each observation is a plan-rating area-year. 
Standard errors are clustered at the insurer level and shown in parentheses.  

The empirical findings hold when using other measures of plan designs. The conceptual 

framework shows that sorting into straight-deductible plans represents high-risk 

individuals’ preference for designs concentrating coverage in larger losses. In reality, many 

other non-straight-deductible designs may provide similar coverage. I create three 

continuous measures of plan designs to capture the similarity of plan designs to straight-

deductible plans. First, I calculate each plan’s fraction of losses covered for the first $2,000 
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total medical expenditure (evaluated for the individual with market-average risk). Within 

a metal tier, the smaller the value, the more coverage is concentrated in larger losses. 

Second, I use the relative risk premium, calculated as risk premium minus the risk premium 

of the straight-deductible plan with the same AV for the average population. This measure 

is zero for straight-deductible designs and is larger when the design differs more from a 

straight-deductible design. Third, I calculate the ratio of deductible over MOOP. Straight-

deductible plans will have a ratio of one, while a smaller value indicates the plan offers 

more coverage for smaller losses. Table 5 shows that enrollees in plans with more coverage 

in larger losses, smaller risk premiums, and larger deductible to MOOP ratio have 

significantly higher total medical expenditure, consistent with the baseline results. 

Table 5. Plans’ Total Expenditure and Different Design Measures 

 (1) (2) (3) 

 Dependent Variable: total medical 
expenditure per member month 

% losses covered for first $2,000 -5.49   
(0.79)   

Risk premium, $100  -24.02  
 (3.73)  

Deductible to MOOP ratio   99.98 
  (20.03) 

N 7,842 7,842 7,842 
R2 0.56 0.55 0.55 

y-mean 554.74 
y-sd 382.28 

Controls 
AV, metal tier, network type, HSA-

eligibility, insurer FE, year FE, service 
area FE 

Note: The sample includes plans between 2014 and 2017 with a premium increase of more than 
10%. I dropped those reporting non-positive total expenditure or premium and plans with the top 
and bottom one percent of either value to avoid impact from extreme values. Each observation is a 
plan-state-year. “% losses covered for first $2,000” measures each plan’s fraction of losses covered 
for the first $2,000 total medical expenditure evaluated for the individual with market-average risk. 
“Risk premium” measures the difference in the risk premium of choosing the plan relative to the 
straight-deductible plan with the same actuarial value. The dependent is the average total medical 
expenditure per member per month. Standard errors are clustered at the insurer level and shown in 
parentheses.  

The results are robust to controlling for various other plan attributes. In Appendix 

Figure C3, I use total medical expenditure as the dependent variable, add different plan 

characteristics one at a time, and plot the coefficient of straight-deductible plan. The figure 
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shows that the estimates are stable when different controls are added. I further estimate 

Table 4 separately for plans with an HSA and those without. Appendix Table C5 shows 

that the baseline sorting pattern holds for both samples, though the magnitude is smaller 

among plans with no HSA. 

3.4.2 Insurer-Level Analysis 

There are two concerns with the plan-level analysis. First, despite controlling for metal 

tier fixed effects, the ex-post medical expenditure may reflect moral hazard rather than 

selection within a metal tier. Second, the plan-level analysis is based on half of the plans 

with large premium increases, not the whole sample. I address both issues using insurer-

level analysis. I collect insurer-level total medical expenditures and, most importantly, the 

risk transfer payment information from the Uniform Rate Review filings.14 Risk transfers 

are calculated based on the average risk scores of enrollees and reflect the ex-ante medical 

expenditure risk rather than moral hazard responses (Polyakova, 2016). All insurers are 

subject to the risk-transfer reporting, producing a more representative sample. 

The key independent variable is whether an insurer offers any straight-deductible plan. 

I confirm that such insurers are similar to others along many observed dimensions. 

Appendix Table C6 shows that insurers offering at least one straight-deductible plan are 

similar to other insurers in terms of offering HMO plans, offering plans with a national 

network, operating in rural areas, and total enrollment size. The only difference is that they 

are more likely to offer HSA-eligible plans. I add enrollment share in HSA-eligible plan, 

state, and year fixed effects for the insurer-level analysis to control for the potential impacts 

of HSA-eligibility. 

Table 6 shows the comparison at the insurer level. As in the plan-level analysis, insurers 

offering straight-deductible plans experience significantly higher total medical expenditure 

per member month (column 1) and pay more claims (column 2) than other insurers. 

Moreover, they also receive higher risk transfer payments ($41 per member per month, 

column 3.) The estimated risk transfer differences account for more than 75% of the 

estimated differences in insurers’ liability. The premium differences are much smaller and 

 
14 Plan-level risk transfers are also estimated by insurers for a subset of plans. However, many insurers use 
plan premiums to allocate insurer-level risk transfers to plans. According to the single risk pool regulation, 
different designs are required to have similar premiums within a metal tier, making the allocated plan-level 
risk transfers inappropriate to capture selection within a metal tier. 
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indifferent from zero, suggesting that risk transfer regulations are well enforced to blunt 

the pass-through of these selection differences to consumers.  

Table 6. Insurer-Level Sorting Pattern 

 (1) (2) (3) (4) 

 
Total 

Expenditure 
Insurer 

Liability 
Risk 

Transfers 
Average 
Premium 

Offer Straight-Deductible 
Plan 

71.92 53.84 40.58 14.34 
(27.55) (22.23) (13.51) (13.84) 

N 617 617 617 617 
R2 0.262 0.239 0.144 0.604 
Dep. Var. Mean 474.7 357.1 -6.201 381.1 
Dep. Var. SD 124.1 102.5 66.03 97.42 

Note: Each observation is an insurer year. “Offer Straight-Deductible Plan” is a dummy variable 
indicating whether an insurer offers any straight-deductible plan. In all columns, the dependent 
variables are measured using the per member per month value. The dependent variable in (1) is the 
average total medical expenditure of enrollees in a plan, including consumer cost-sharing and 
insurer payments. The dependent variable in (2) is the average medical expenditure paid by insurers. 
The dependent variable in (3) is the average risk transfer an insurer receives. The dependent 
variable of (4) is the average premium. All models include year fixed effects, state fixed effects, 
and the fraction of enrollees in plans with a health savings account. The regressions are weighted 
by the enrollment at each insurer-year. Standard errors are clustered at the insurer level. 

 

Table 7. Insurers’ Risk Transfers and Different Plan Design Measures 

 (1) (2) (3) 
 Dependent Variable: Risk Transfers 

Avg. % losses covered for first 
$2,000 

-1.24   
(0.60)   

Avg. risk premium, $100  -16.96  
 (3.75)  

Avg deductible to MOOP ratio   102.21 
  (34.48) 

N 617 617 617 
R2 0.56 0.26 0.24 

y-mean -6.20 
y-sd 66.03 

Controls HSA-eligibility enrollment share, year 
FE, state FE 

Note: Each observation is an insurer year. “Avg. % losses covered for first $2,000” is the insurer-
year-level average of the plans’ fraction of losses covered for the first $2,000 total medical 
expenditure evaluated for the individual with market-average risk. The unit is one percentage point. 
“Avg. risk premium” is the insurer-year-level average of the risk premium of plans offered by 
insurers. “Avg. deductible to MOOP ratio” is the insurer-year-level average of the deductible over 
MOOP of plans offered by insurers. The dependent variable is the average risk transfers per 
member per month. Standard errors are clustered at the insurer level and shown in parentheses.  
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The results are similar using continuous plan design measures. I calculate the insurer-

level average of the three continuous plan design measures and use them as the independent 

variables. Table 7 shows that insurers with more plans covering larger losses, lower risk 

premiums, and larger deductible to MOOP ratios receive significantly larger risk transfers. 

The results are robust when controlling for different sets of insurer characteristics and 

imputing missing observations from the Medical Loss Ratio files. I present the robustness 

checks in Appendix Table C7.  

As a final note, the sorting pattern may be driven by specific (rational) choice heuristics. 

For example, the straight-deductible plans have the lowest MOOP within a metal tier. If 

high-risk individuals care only about the worst-case risk and choose based on MOOP, they 

sort into straight-deductible plans. My conceptual framework provides one rationale for 

such heuristics. 

 

4 Calibrating Impacts of Plan Design Regulations for the ACA Federal Exchange 

The plan offering and sorting pattern in the ACA Exchange suggests that limiting plan 

design variations might have economically meaningful impacts on consumer welfare. In 

this section, I calibrate the likely impacts of limiting plan designs in the ACA Federal 

Exchange. Specifically, I compare the market outcome under two menus: The actual 2017 

plans offered in the ACA Exchange and a hypothetical choice set replacing all options with 

a straight-deductible plan of the same premium. This new choice set has the same number 

of options and premiums as the existing one. The only difference is that all plans have a 

straight-deductible design.  

The exercise highlights the tradeoff between two factors. First, consumers are often 

confused about the plan design and fail to sort into suitable plans for them (Abaluck and 

Gruber 2011, 2019; Bhargava et al. 2017). The consequence of choosing the wrong plan is 

especially large for the higher-risk types. Given that their desired plans have a straight-

deductible design, limiting only to these plans may help mitigate the consequence of 

sorting into the wrong plan for them. Second, as discussed in Section 2.3, limiting to 

straight-deductible plans will reduce the consumer welfare of the lower-risk types. The 

overall surplus then depends on which force dominates. 

4.1 Setup 
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Demand side. Consumers are modeled as expected utility maximizers choosing plans 

based on the perceived utility:  

𝑣". = ∫ 𝑢O𝑤 − 𝑂𝑂𝑃.(𝑥) − 𝑝.Q𝑑𝐹"(𝑥)\]]]]]]]]]^]]]]]]]]]_
/0-,120320-0415)	7)"-")8

+ 𝛽𝜖".bcccccccccccdccccccccccce
90:"!";5	7)"-")8

. (7) 

The deterministic part, ∫ 𝑢O−𝑂𝑂𝑃. − 𝑝.Q𝑑𝐹", is a function of the wealth level, 𝑤, out-

of-pocket spending, 𝑂𝑂𝑃., and net premium after subsidy, 𝑝.. It determines the welfare-

relevant value of each plan 𝑗 for individual 𝑖. The second component of the choice utility 

is an error component, 𝜖".. It affects the choice of each consumer but is not relevant to 

welfare. The error term creates the potential for consumer confusion. Consumers in the 

ACA Exchange often face a large choice set, typically around 20 options in each county, 

making confusion a likely concern. The larger the scaling parameter 𝛽 , the more 

randomness there will be in plan choice. 𝛽 = 0 represents the case where all consumers 

choose optimally. 

Supply side. On the supply side, I assume a perfectly competitive market with perfect 

risk adjustment. In such a market, raw plan premiums are a mechanic function of the 

expected covered spending if all types choose the plan plus a loading factor: 

𝑝. = 𝜃C𝜏".𝑤"
"

, (8) 

where 𝜏".  is the expected covered spending of individual type 𝑖 under plan 𝑗, 𝑤"  is the 

population weights of each type,  𝜃 is the loading factor. Even though other literature finds 

that the risk adjustment is not perfect along dimensions like drug formulary (Geruso, 

Layton, and Prinz, 2020), the findings in section 3.3 suggest that single risk pool 

requirement and risk adjustment regulations are successful in flattening the premium level 

of different plan designs. The perfect risk adjustment assumption is a good characterization 

of the sorting pattern of this model. I also assume all insurers incur the same loading factor, 

representing the necessary transaction costs of providing insurance, which is motivated by 

the Medical Loss Ratio regulation. Under these assumptions, insurers are passive about 

which plans to offer.  

Model calibration. I calibrate the model's key components to the observed data in the 

ACA market. First, I model each market as a county because the choice set varies at the 
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county level in the ACA. I create 100 risk types using the k-means clustering method from 

Truven MarketScan data (see details in Appendix B.) I mean-shifted these distributions 

such that the overall medical expenditure level is benchmarked to the 2017 ACA Federal 

Exchange average. Since I do not have information about the risk distributions at each 

county, I assume that all counties have identical risk distributions. I create five sub-types 

for each risk type: consumers facing non-CSR plans and no premium subsidy, non-CSR 

plans, and premium subsidy, and both (3 CSR plan types). The county-level average 

premium subsidy amount (among eligible people) and relative weights of each type are 

collected from the 2017 Open Enrollment Period County-Level Public Use Files.15 The 

CSR-eligible consumers can choose from CSR plans rather than the Standard Silver plans. 

I assume that consumers have a CARA utility function with a risk aversion coefficient 

of 0.0004 (the median and mean estimated by Handel (2013).) Under the CARA utility 

function, 𝑤  is irrelevant. As a result, equation (7) can be simplified as 𝑣". = −𝑝".′ +

∫ 𝑢 h−𝑂𝑂𝑃.(𝑥)i 𝑑𝐹"(𝑥) + 𝛽𝜖"., where 𝑝".′ is the net premium. I convert each plan’s cost-

sharing attributes into a simplified three-arm design (see Appendix E for details). With the 

three-arm design and individuals’ loss distribution, I can calculate 𝜏".  and 𝑝. . The net 

premiums, 𝑝"., for those who are eligible for subsidy, is 𝑝. minus the subsidy amount.  

Finally, I assume 𝜖". to be i.i.d following the extreme value type one distribution. I vary 

𝛽 from 0 to some positive numbers. Under each 𝛽, I calculate the plan chosen by each 

individual type as the one maximizing 𝑣".. Let 𝑗"∗(𝛽) denote the plan chosen by individual 

𝑖 under 𝛽. The total efficiency of the market under 𝛽	is calculated as  

𝑠𝑠(𝛽) =CC𝑤": h∫ 𝑢 h−𝑂𝑂𝑃.'∗(>)(𝑥)i 𝑑𝐹"(𝑥) − 𝜃𝜏".'∗(>)i
"∈::

, (9) 

where 𝑖 ∈ 𝑐 indicates individuals in county 𝑐, and 𝑤": are population weights of that type.  

The consumer surplus of individual 𝑖 under 𝛽 is: 

𝑐𝑠"(𝛽) = ∫ 𝑢 h−𝑂𝑂𝑃.'∗(>)(𝑥)i 𝑑𝐹"(𝑥) − 𝑝".'∗(>). (10) 

I elaborate more on calibration details in Appendix E and summarize the parameter 

sources in Appendix Table E1.  

 
15  https://www.cms.gov/data-research/statistics-trends-and-reports/marketplace-products/2017-
marketplace-open-enrollment-period-public-use-files 
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Model caveat. The simulation makes a few simplification assumptions. First, I assume 

no insurance is not in the choice set of consumers. This assumption abstracts away from 

the extensive margin of the market. Second, I assume that all insurers have the same 

medical loss ratios and are perfectly competitive. Third, I focus on the variation in plans’ 

financial attributes and ignore other plan characteristics. Fourth, I assume consumers have 

no moral hazard responses. These abstractions make the model tractable and highlight the 

key insights. 

4.2 Results 

Figure 4 shows the results. The y-axis represents the social or consumer surplus 

difference between the hypothetical menu and the actual menu. A positive number means 

consumers are better off under the straight-deductible-only environment than facing the 

current ACA menu. To illustrate the distributional effects, I split consumers into those with 

above and below median expected medical expenditure. The solid line represents the 

overall social surplus, while the the two dashed lines represent consumer surplus for each 

type. The x-axis is the fraction of consumers choosing the non-optimal plan, an increasing 

function of β.  

When there is no confusion, limiting plans to straight-deductible design increases 

overall welfare by $12 per person per year. The welfare gain comes from offering straight-

deductible plans to high-risk types in places where these plans are not available, while such 

benefits are largely offset by the welfare loss from forcing the low-risk types to choose 

such plans. 

When consumers in the market are more likely to make a mistake in choosing plans, 

both the overall efficiency and the surplus for higher-risk types increase. For example, 

when 50% of consumers sort into a wrong plan, the average efficiency is $30 higher with 

regulation per year, and the surplus for the higher-risk types is $70 higher per year with 

regulation. However, such a change is not a Pareto improvement: The lower-risk types are 

worse off under such regulation. At the 50% confusion level, they are worse off by about 

$10 per year under the design regulation. 

The simulation illustrates two key points. First, standardizing plan designs has 

distributional impacts: limiting to straight-deductible designs is not a Pareto improvement 

because such restriction removes valuable options for low-risk types. Second, the level of 
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confusion matters for the overall welfare gains of regulating plan designs. When the 

confusion level is high enough, standardizing plan designs to straight-deductible plans can 

create large welfare benefits for the high-risk types.  

Figure 4. Efficiency Effects of Regulating Plan Designs in ACA 

 
Note: The y-axis represents the difference between the value under and without the design 
regulation. The regulation replaces all current ACA plans with a straight-deductible plan of the 
same premium. 

Ultimately, the welfare impacts of plan standardization policies depends on the extent 

to which consumers have confusion when choosing health insurance plans. Previous 

literature has documented that consumers respond strongly to plan standardization policies 

in marketplaces like the ACA exchange (Ericson and Starc 2007). There are also works 

showing that consumers choose ACA cost-sharing reduction variations properly (DeLeire 

et al. 2017). My calibration illustrates the importance in estimating consumer confusion in 

this market.  

 

5 Conclusion 

In this paper, I identify an understudied dimension of sorting in insurance markets: 

Sorting by plans’ multi-dimensional cost-sharing attributes. I show that in a market with 

asymmetric information, lower-risk consumers will sort into designs with less coverage for 

larger losses in exchange for more coverage for smaller losses, while higher-risk consumers 
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sort into straight-deductible plans. The framework extends the classic model considering 

binary losses and can rationalize the proliferation of plan designs in health insurance 

markets. 

The framework provides a new perspective on the trade-offs introduced by plan 

standardization policies. Prior literature recognizes that simplifying insurance contract 

characteristics can make it easier for consumers to compare plans and promote competition 

and efficiency. I illustrate that in a market with asymmetric information, plan design 

variation can also serve as a tool to separate different risk types and support an equilibrium 

where lower-risk consumers suffer less distortion under asymmetric information. As a 

result, removing plan design variation may harm efficiency. The overall benefits of 

standardizing plan design thus depend on the relative importance of these concerns.  

The framework abstracts away from certain market conditions and opens for future 

research. First, the baseline model does not consider moral hazard responses. 

Understanding how plan cost-sharing attributes induce expenditure within a coverage level 

and how that interacts with plan selection under an endogenous contract design framework 

is an important question. Second, the framework assumes perfect competition. More 

research is needed to understand how market power may complicate the welfare 

implications of plan standardization policies. 
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Appendix A. Proofs in Section 2 
Proposition 1. Proof:  
The optimization problem for the consumer is: 

𝑣 = 𝑚𝑎𝑥
𝒍
C𝑢(𝑤 − 𝑥! + 𝑙!
!

− 𝑝(𝒍))𝑓!, ∀𝒍 

subject to: 
 0 ≤ 	 𝑙! ≤	𝑥!, 

𝑝(𝒍) 	= 𝜃C𝑓!𝑙!
!

+ 𝑐. 

 𝒍 = (𝑙@, 𝑙A, … , 𝑙!, … , 𝑙B) is the vector of the insurance payments in each state. 
The first-order condition is: 

𝜕𝑣
𝜕𝑙!

= 𝑢!% (1 − 𝜃𝑓!)𝑓! − 𝜃𝑓!C𝑢C%𝑓C
CD!

≤ 0, ∀𝑠, 

with equality if 𝑙! > 0.  
First, note that if 𝑙E = 𝑥! is binding for state 𝑠, then it’s binding for all other states. This 

corresponds to the case when 𝜃 = 1 and the optimal insurance is full insurance. For 𝜃 > 1, 
full insurance is no longer optimal because of loading. For all states, 𝑙! < 𝑥!. 

Second, note that the FOC can be rewritten as 𝑢!% ≤ 𝜃∑ 𝑢C%𝑓CC . The right-hand side is 
the same for all states, which implies that once binding, 𝑥! − 𝑙! is a constant. Since 𝑢%% <
0, FOC is binding when 𝑥! is larger than a certain level. Suppose 𝑥9 = 𝑑 is the level where 
𝑢!% (𝑤 − 𝑥9) = 𝜃 ∑ 𝑢C%𝑓CC . Then the optimal insurance plan has the following form: 

𝑙!∗ = 6 0, 𝑖𝑓	𝑥! < 𝑑
𝑥! − 𝑑, 𝑖𝑓	𝑥! ≥ 𝑑, 

which is the straight-deductible design. ∎ 
 
Proposition 2. Proof: 
The optimization problem for 𝐿 is: 

𝑚𝑎𝑥
𝒍
C𝑢*(𝑤 − 𝑥! + 𝑙!
!

− 𝑝(𝒍))𝑓!* 

subject to: 
𝑝(𝒍) 	= 𝜃C𝑓!*𝑙!

!

+ 𝑐, 

0 ≤ 	 𝑙! ≤	𝑥!, 
C𝑢+(𝑤 − 𝑥! + 𝑙!
!

− 𝑝)𝑓!+ = 𝐴. 

 𝒍 = (𝑙@, 𝑙A, … , 𝑙!, … , 𝑙B) is the vector of the insurance payments in each state. 𝐴 represents 
the utility 𝐻 gets from choosing their optimal contract under full information. The last 
condition thus represents the binding incentive compatibility constraint for 𝐻. 

The Lagrange of the above optimization problem is:  
ℒ(𝒍) =C𝑢*(𝑤 − 𝑥! + 𝑙!

!

− 𝑝(𝒍))𝑓!* − 𝜆(C𝑢+(𝑤 − 𝑥! + 𝑙!
!

− 𝑝(𝒍))𝑓!+ − 𝐴). 
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Let 𝑢*!%  denote the derivative of lower-risk type utility function with regard to 
consumption in loss state 𝑠. The first-order condition is: 

𝑢*!% − 𝜆
𝑓!+

𝑓!*
𝑢+!% ≤ 𝜃 pC𝑢*C% 𝑓C*

C

− 𝜆C𝑢+C% 𝑓C+
C

q	∀𝑠, 
(4) 

with equality if	𝑙! > 0. Note that since the right-hand side is a constant, 𝑢*!% − 𝜆 ,#
%

,#$
𝑢+!%  is 

the same across loss states with 𝑙! > 0. 
Now take two loss states 𝑠  and 𝑡  such that 𝑥! ≠ 𝑥) , 𝑙! > 0  and 𝑙) > 0 . ,#

%

,#$
≠ ,&

%

,&$
 by 

assumption. Suppose that a straight deductible is optimal, then 𝑙! − 𝑥! = 𝑙) − 𝑥)  (equal 
consumption when losses are larger than the deductible level). This then implies that 𝑢*!% =
𝑢*)%  and 𝑢+!% = 𝑢+)% . But since ,#

%

,#$
≠ ,&

%

,&$
, 𝑢*!% − 𝜆 ,#

%

,#$
𝑢+!% ≠ 𝑢*)% − 𝜆 ,&

%

,&$
𝑢+)% , contradictory to 

(4). As a result, the optimal plan for the lower-risk type cannot be a straight-deductible 
plan. ∎ 
 
Proposition 3 Proof:  

Take any loss state 𝑠, and assume that the ,#
$

,#%
= 𝛼. The first-order conditions of the 

coverage in state 𝑠 for 𝐻 are: 

𝑢!+% ≤
𝜃
2 (1 + 𝛼)C𝑢C+% 𝑓C+

C

, ∀𝑙!, 

with equality if 𝑙! > 0. Similarly, the first-order conditions for 𝐿	are: 

𝑢!*% ≤
𝜃
2 (1 +

1
𝛼)C𝑢C*% 𝑓C*

C

, ∀𝑙!, 

with equality if 𝑙! > 0.  
For any two loss states 𝑥) > 𝑥F,  we know that ,&

$

,&%
< ,)$

,)%
. This means whenever 𝑙) > 0 

and 𝑙F > 0, 𝑢)+% < 𝑢F+%  and 𝑢)*% > 𝑢F*% . Since 𝑢+%% < 0  and 𝑢*%% < 0 , 𝑙+)∗ − 𝑥) ≥ 𝑙+F∗ − 𝑥F 
and 𝑙*)∗ − 𝑥) ≤ 𝑙*F∗ − 𝑥F. That is, the consumption in state 𝑡 is always no smaller than the 
consumption in 𝑧 for the higher-risk type, and the consumption in state 𝑧 is always no 
smaller than the consumption in 𝑡 for the lower-risk type.  

Note that among the plans with non-increasing consumption, the implied consumption 
in 𝑡 cannot be larger than the implied consumption in 𝑧. This means the higher-risk type 
will either have zero indemnity at small loss states or a constant consumption 𝑐∗ once the 
indemnity is positive. The higher-risk type would want larger consumption in state 𝑡 than 
in 𝑧, but cannot because of the non-increasing consumption constraint.16 This means the 
higher-risk type will desire a straight-deductible plan. The lower-risk type is not 
constrained and will desire a plan with larger consumption for smaller losses (𝑥!) than in 
larger losses (𝑥)), a non-straight-deductible design.	∎ 

 
16 The non-increasing consumption constraint implies that for any loss states z and t where 𝑥* > 𝑥+ , the 
allowed plan must imply 𝑐* 	≤ 𝑐+, where 𝑐" denote consumption in state 𝑠. Empirically, since most health 
insurance plans accumulate spending over a year, almost all comprehensive health insurance plans satisfy 
this condition. 
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Corollary 1 Proof: 

The optimization problem for 𝑖 is: 
𝑚𝑎𝑥
𝒍
C𝑢"(𝑤 − 𝑥! + 𝑙!
!

− 𝜃C𝑓!*𝑙!
!

− 𝑐)𝑓!" 

subject to: 
𝜃C𝑓!*𝑙!

!

+ 𝑐 = 𝐴, 

0 ≤ 	 𝑙! ≤	𝑥!. 
𝒍 = (𝑙@, 𝑙A, … , 𝑙!, … , 𝑙B) is the vector of the insurance payments in each state. 𝐴 is the fixed 
premium level individuals are required to choose from.  

The Lagrange of the above optimization problem is:  
ℒ(𝒍) =C𝑢*(𝑤 − 𝑥! + 𝑙!

!

− 𝑝(𝒍))𝑓!* − 𝜆(𝜃C𝑓!*𝑙!
!

+ 𝑐 − 𝐴). 

Take any loss state 𝑠, and assume that the ,#
$

,#%
= 𝛼. The first-order condition of the coverage 

in state 𝑠 for 𝐻 is: 

𝑢!+% ≤
𝜃
2
(1 + 𝛼)(C𝑢C+% 𝑓C+

C

+ 𝜆), ∀𝑙!, 

with equality if 𝑙! > 0. Similarly, the first-order conditions for the lower-risk type are: 

𝑢!*% ≤
𝜃
2 (1 +

1
𝛼)(C𝑢C*% 𝑓C*

C

+ 𝜆), ∀𝑙!, 

with equality if 𝑙! > 0. The FOCs are the same as the FOCs in Proposition 3 except for 
adding a constant in the last term of the right-hand side. All the other arguments follow as 
the proof of proposition 3.	∎ 
 

Appendix B. Numeric Example Details 
B.1. Constructing Risk Distributions from Claims Data 

I need information about the ex-ante medical expenditure distributions to calculate 
plans chosen by different risk types and simulate the welfare implications of plan 
standardization policy. I derive such information using the Truven MarketScan data, a large 
claims database for US employer-sponsored plans. The Truven data have been used to 
benchmark health spending in many studies (for example, Geruso, Layton, and Prinz 2019) 
and to calculate the AV for plans in the first two years of the ACA markets. I select a 
random 5% sample of individuals enrolled in a non-capitated plan in 2012 and 2013. In 
total, there are 190,283 unique individuals in the sample. 

The goal is to construct a few ex-ante risk types representing the heterogeneity in 
medical expenditure in the US health insurance markets. I use the k-means clustering 
method to get these groupings. K-means clustering is a non-supervised learning algorithm 
that groups individuals with similar characteristics and puts individuals with dissimilar 
characteristics in different groups (Agterberg et al., 2019).17 I use age, gender, employment 

 
17 This method is different from the supervised learning approach (such as regressions) to predict medical 
expenditure and construct risk scores (Kautter et al. 2014).  
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status, dummies for pre-existing chronic conditions (constructed based on diagnosis and 
procedure codes), and medical expenditure in 2012 as inputs to the model.  

For illustrative purposes, I first create two clusters and use them to separate the 
population into two risk types. After obtaining the clusters, I fit a three-parameter log-
normal distribution with a mass at zero to the 2013 medical expenditure for each group to 
get the risk distribution (Einav et al. 2013) and inflate the expenditure to 2017 dollars.  

 
Appendix Figure B1. PDF of the Two Benchmark Risk Distributions 

 
Note: Author estimation from Truven MarketScan data. Mass at zero was omitted for ease of 
exposition. 

 
The resulting lower-risk type has an expected risk of $1,843 and a standard deviation 

of $7,414, representing 26% of the population in the sample. The higher risk has an 
expected risk of $7,537 and a standard deviation of $22,444. Appendix Figure B1 plots the 
probability density function of the two distributions. The lower risk has a 28.56% 
probability of incurring no losses, and the higher risk has a 4.53% probability of incurring 
no losses (not plotted in the graph.) The graph shows that the two probability density 
functions have different shapes: The low-risk type has greater probability density on 
smaller losses while the high-risk type has greater probability density on larger losses. 

I then use similar methods to create 100 risk types and use them in the simulation 
exercise in Section 4. 
B.2. Calculating Equilibrium Plans 

I parameterize the consumer preference using the constant-absolute-risk-aversion 
(CARA) utility function. Consumers are risk averse with a risk-aversion coefficient 𝛾 = 
0.0004, which is the mean level of risk aversion estimated by Handel (2013) for a 
population of employees choosing health insurance plans.  

I consider a choice set with rich variation in the cost-sharing attributes. I allow for two 
broad categories of plan designs. The first category of plans has a three-arm design with 
four plan attributes: A deductible, a MOOP, a coinsurance before the deductible, and a 
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coinsurance rate after the deductible. To make the simulation tractable, I discretize the 
contract space and assume the MOOP is no larger than $100,000. The second category 
consists of constant coinsurance plans, with a coinsurance rate ranging between zero and 
one. Both full insurance (in the form of zero constant coinsurance to consumers) and no 
insurance are in the choice set. 

For the premium, I assume insurers charge a premium 20% higher than the claims costs 
(𝜃 = 1.2).18 I simulate the premiums of each plan, either under risk-based pricing (plan 
premiums differ by which type chooses the plan) or perfect risk adjustment. For the no-
risk adjustment case, I follow the equilibrium notion by Azevedo and Gottlieb (2017) to 
calculate the equilibrium plans. 
 

Appendix C. Supplementary Materials for the Empirical Analysis 
In this section, I present supplementary tables and figures for the empirical analysis in 

Section 3.  

Appendix Table C1. States in the Sample 
2014 AK, AL, AR, AZ, DE, FL, GA, IA, ID, IL, IN, KS, LA, ME, MI, MO, MS, 

MT, NC, ND, NE, NH, NJ, NM, OH, OK, PA, SC, SD, TN, TX, UT, VA, WI, 
WV, WY 

2015 AK, AL, AR, AZ, DE, FL, GA, , IA, IL, IN, KS, , LA, ME, MI, MO, MS, MT, 
NC, ND, NE, NH, NJ, NM, NV, OH, OK, OR, PA, SC, SD, TN, TX, UT, VA, 
WI, WV, WY 

2016 AK, AL, AR, AZ, DE, FL, GA, HI, IA, IL, IN, KS, , LA, ME, MI, MO, MS, 
MT, NC, ND, NE, NH, NJ, NM, NV, OH, OK, OR, PA, SC, SD, TN, TX, UT, 
VA, WI, WV, WY 

2017 AK, AL, AR, AZ, DE, FL, GA, HI, IA, IL, IN, KS, KY, LA, ME, MI, MO, 
MS, MT, NC, ND, NE, NH, NJ, NM, NV, OH, OK, OR, PA, SC, SD, TN, TX, 
UT, VA, WI, WV, WY  

 
Appendix Table C2. Data Source of Empirical Analysis 

Panel A. 
Data Source Link Unit of 

Observation 
Key Variables Analysis 

Using the Data 

Health 
Insurance 
Exchange 
Public Use 
Files: 2014-
2017 

https://www.cms.gov/CCII
O/Resources/Data-
Resources/marketplace-puf; 
https://www.cms.gov/CCII
O/Resources/Data-
Resources/issuer-level-
enrollment-data  

Plan ID by year  

Deductible, 
MOOP, 
coinsurance rates, 
AV, enrollment, 
HSA-eligibility 

Figure 1-2, 
Table 3, 
Appendix 
Figure C2 

Plan ID by 
rating area by 
year 

Premiums Table 4 
Column (3) 

Uniform Rate 
Review Data: 
2016 - 2019 

https://www.cms.gov/CCII
O/Resources/Data-
Resources/ratereview 

Plan ID by year 

Total expenditure 
and collected 
premiums per 

Figure 3, 
Table 4 
Column (1) 
and (2), 

 
18 Regulations adopted as part of the Affordable Care Act require insurers to have at least 80% or 85% 
(depending on the size) of their premium used to cover claims costs. When this regulation binds, it implies a 
loading factor of around 1.2. 
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member per 
month (PMPM) 

Appendix 
Figure C3, 
Appendix 
Table C4-C5 

Insurer by year 

Total expenditure, 
insurer liability, 
risk transfers, and 
average premium 
PMPM 

Table 5, 
Appendix 
Table C5- C7 

Medical Loss 
Ratio filings: 
2014-2017 

https://www.cms.gov/CCII
O/Resources/Data-
Resources/mlr 

Insurer by year Risk transfers 
PMPM 

Appendix 
Table C7 

Open 
Enrollment 
Period 
County-Level 
Public Use 
File 

https://www.cms.gov/data-
research/statistics-trends-
and-reports/marketplace-
products/2017-marketplace-
open-enrollment-period-
public-use-files 

County by year Enrollment share 
in CSR and 
premium 
subsidies 

Figure 4 

Panel B. Matching across Different Datasets 
Datasets # of insurer-year: 2014-

2017 % matched 

Insurer-year with plan information 821 100% 
Uniform Rate Review Data 619* 75.4% 
Medical Loss Ratio filings 796 97.0% 
Combined – risk transfers 746 90.9% 

Note: Each plan ID represents a unique combination of cost-sharing structure, plan type, drug formulary, and 
insurer. Cost-sharing variations are dropped for Silver plans, so only standard Silver plans are included in the 
sample. The Uniform Rate Review Data have a two-year lag, so the 2016 - 2019 reports match the 2014 - 
2017 plan information. *The numbers are slightly larger than the sample size reported in Table 3 and 
Appendix Table C4 because two observations are absorbed by fixed effects. 
 

Appendix Table C3. List of Essential Health Benefits 
Category Benefit Name 
Medical 
Services 

Emergency Room Services, Inpatient Physician and Surgical Services, 
Imaging (CT/PET Scans, MRIs), Laboratory Outpatient and 
Professional Services, Outpatient Surgery Physician/Surgical Services, 
Mental/Behavioral Health and Substance Use Disorder Outpatient 
Services, Outpatient Facility Fee (e.g.,  Ambulatory Surgery Center), 
Occupational and Physical Therapy, Primary Care Visit to Treat an 
Injury or Illness (exc. Preventive, and X-rays), Specialist Visit, Skilled 
Nursing Facility, Speech Therapy, X-rays and Diagnostic Imaging. 

Drug Tiers Generics, Preferred Brand Drugs, Non-Preferred Brand Drugs, Specialty 
Drugs (i.e. high-cost). 

 
  



39 
 

Appendix Table C4. Plan Design and Other Plan Characteristics 

  

Non-
Straight-

Deductible 
Plans 

Straight-
Deductible 

Plans 
Difference 

HMO 0.502 0.504 0.002 
(0.500) (0.500) (0.018) 

National Network  
0.327 0.322 -0.005 

(0.469) (0.467) (0.017) 

HSA Eligible  
0.130 0.723 0.593*** 

(0.336) (0.448) (0.012) 

New Plan  
0.506 0.488 -0.017 

(0.500) (0.500) (0.018) 
Fraction of Launched 
Counties That Are Rural 

0.366 0.365 -0.001 
(0.311) (0.336) (0.011) 

N 6,931 911 7,842 
Note: The sample includes plans between 2014 and 2017 with a premium increase of more than 
10%. I dropped those reporting non-positive total expenditure or premium and plans with the top 
and bottom one percent of either value to avoid impact from extreme values. Each observation is a 
plan-state-year. Means and standard errors in parenthesis. *: p<0.1, **: p<0.05, ***: p<0.01. “HMO” 
stands for health maintenance organization, as opposed to other managed care plan types, including 
preferred provider organization (PPO), exclusive provider organization (EPO), or point of service 
(POS) plans.  
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Appendix Table C5. Robustness Check: HSA Eligibility 
Panel A. Plans with HSA 

 (1) (2) (3) (4) 

 Dependent Variable: total medical expenditure per member 
month 

Straight-Deductible Plan 189.81    
(27.86)    

     

% losses covered for first $2,000  -12.43   
 (4.21)   

     

Risk premium, $100   -78.85  
  (19.69)  

Deductible to MOOP ratio    442.22 
   (68.46) 

N 1,441 1,441 1,441 1,441 
R2 0.66 0.65 0.66 0.67 

y-mean 570.98  
y-sd 425.44  

Controls metal tier, network type, HSA-eligibility, 
insurer FE, year FE, service area FE 

 

Panel B. Plans without HSA 
 (1) (2) (3) (4) 

 Dependent Variable: total medical expenditure per member 
month 

Straight-Deductible Plan 58.17    
(31.92)    

     

% losses covered for first $2,000  -3.22   
 (0.63)   

     

Risk premium, $100   -13.68  
  (3.13)  

Deductible to MOOP ratio    33.62 
   (18.32) 

N 6,261 6,261 6,261 6,261 
R2 0.57 0.57 0.57 0.57 

y-mean 552.31  
y-sd 371.77  

Controls metal tier, network type, HSA-eligibility, 
insurer FE, year FE, service area FE 

 

Note: The sample includes plans between 2014 and 2017 with a premium increase of more than 10%. I 
dropped those reporting non-positive total expenditure or premium and plans with the top and bottom one 
percent of either value to avoid impact from extreme values. Each observation is a plan-state-year. “Straight-
deductible plan” is a dummy variable indicating whether the plan has a straight-deductible design. “% losses 
covered for first $2,000” measures each plan’s fraction of losses covered for the first $2,000 total medical 
expenditure evaluated for the individual with market-average risk. “Risk premium” measures the difference 
in risk premium of choosing the plan relative to the straight-deductible plan with the same actuarial value. 
The dependent is the average total medical expenditure per member per month. Standard errors are clustered 
at the insurer level and shown in parentheses. 
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Appendix Table C6. Straight-Deductible Offering and Insurer Characteristics 

  

Insurers offering 
no straight-

deductible plans 

Insurers offering at 
least one straight-
deductible plan 

Difference 

Offering HMO 0.546 0.560 0.014 
(0.499) (0.497) (0.035) 

Offering National Network 0.240 0.254 0.014 
(0.428) (0.436) (0.030) 

Fraction Enrolled in HSA-
eligible Plans 

0.134 0.182 0.048*** 
(0.195) (0.170) (0.013) 

Operating in rural areas 0.223 0.183 -0.039 
(0.417) (0.386) (0.028) 

Above Median Enrollment 0.460 0.526 0.066 
(0.499) (0.500) (0.041) 

Observations 252 367 619 
Note: Means and standard errors are in parentheses. *: p<0.1, **: p<0.05, ***: p<0.01. “HMO” stands 
for health maintenance organization, as opposed to other managed care plan types, including 
preferred provider organization (PPO), exclusive provider organization (EPO), or point of service 
(POS) plans. 
 

 
Appendix Table C7. Robustness Check: Risk Transfers at the Insurer-Level 

Dep. Var. = Risk Transfers 
Per Member Month 

(1) (2) (3) 

Baseline More 
Controls 

MLR 
Sample 

Offer Straight-Deductible 
Plan 40.58 33.89 34.93 
 (13.51) (12.19) (11.99) 
N 617 617 744 
R2 0.144 0.222 0.122 
Dep. Var. Mean -6.201 -6.201 -6.125 
Dep. Var. SD 66.03 66.03 63.41 

Note: Each observation is an insurer-year. The dependent variable is risk transfers received per 
member month. “Offer Straight-Deductible Plan” is a dummy variable indicating whether an 
insurer offers any straight-deductible plan. All models include year fixed effects and state fixed 
effects. The fraction of enrollees in health savings account is controlled for all columns. Column 
(2) further controls for each insurer’s fraction of enrollees in different metal tiers and network types. 
Column (3) impute the missing values using the Medical Loss Ratio Files. Combining information 
from the Medical Loss Ratio reports, over 90% of insurers that launched a plan have the risk transfer 
information. Standard errors are clustered at the insurer level. 
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Appendix Figure C1. Illustration of Multiple Financial Attributes of ACA Plans 

 
Note: Screenshots from healthcare.gov.  
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Appendix Figure C2. Deductible and MOOP Variation Within A County 

Standard Silver Plans 

 
Gold Plans 

 
Note: Data from 2017 CMS Health Insurance Exchange Public Use Files. I calculate the range of deductible 
(MOOP) for standard Silver and Gold plans within each county, then plot the distribution of all counties 
participating in the Federal Health Insurance Exchange. Plans include all exchange-qualified health plans 
offered to individuals through the Health Insurance Exchange. The deductible and MOOP refer to tier-one 
in-network coverage for an individual, and are cumulative over a year. 

Appendix Figure C3. Total Medical Expenditure per Member Month and 
Straight-Deductible Design 

 
Note: The figure shows the slope coefficient of the plan-level regression of average claim costs on whether 
the plan has a straight-deductible design. The sample includes all plans launched through HealthCare.gov 
between 2014 and 2017. Each observation is a plan by state. In each line, control variables are added on top 
of the left model, so for example, in the second line, both the metal fixed effects and insurer by year fixed 
effects are controlled. “Metal” represents metal-tier fixed effects. “InsYr FE” is insurer-by-year fixed effects; 
“AV” represents the actuarial value of a plan; “Network Type” includes three dummy variables indicating 
HMO, EPO, POS, and PPO (the baseline); “HSA eligible” is a dummy variable indicating whether a plan 
has a health savings account available; “Service Area FE” include dummy variables indicating the set of 
counties a plan is launched. 
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Appendix D. Estimating ACA Plans’ Risk Premium 
To quantify the economic value of different plan designs, I estimate each ACA plan’s 

value to the market-average risk. Let 𝑎  denote the stochastic out-of-pocket spending 
implied by the plan, with a distribution 𝐻. Define risk premium, 𝑅, as follows: 

𝐸[𝑢(𝑤 − 𝑎)] = 𝑢	(𝑤 − 𝐸(𝑎) − 𝑅), 
where 𝑤 represents the wealth level, a represents the stochastic out-of-pocket spending and 
𝐸(𝑎) represents its expected value, and 𝑢(∙) is the utility function. The risk premium 
represents the sure amount the individual needs to receive to be indifferent between 
enrolling in that plan and a full-insurance plan, when both are priced at their fair AV. I now 
specify how 𝐻 and 𝑢(⋅) are calculated. 
Step 1. Calculating Out-of-Pocket Distributions for All Plans 

I calculate 𝐻 for each plan by applying each plan’s cost-sharing rules on the market 
average risk distribution. 

First, I collect the cost-sharing features of a plan’s first-tier in-network coverage for 
essential health benefits. The utilization rate of the first-tier in-network coverage is 94.59% 
on average for the sample plans, and 99.47% of the total premium is contributed to cover 
the essential health benefits on average. I exclude preventive care because all plans must 
cover it with no cost-sharing. I collect each plan’s deductible, MOOP, and 
copay/coinsurance rates for each benefit.  

Second, I retrieved the ACA market representative distribution from the AV calculator, 
a tool created by CMS to compute the AV of each plan. The calculator contains a 
continuation table of the representative individual’s medical expenditure distribution. The 
table is organized as follows: the overall distribution is discretized into 84 cells, each 
representing a range of total expenditure levels (e.g., 0, 0-100, 100-200, etc.). In each cell 
𝑖, the table reports the average total expenditure level, 𝑥", the probability of being in that 
cell, 𝑝", and the expenditure amount and utilization frequency of each of the 17 benefits. 
Appendix Table C3 shows the list of benefits.  

Third, I apply each plan’s cost-sharing rules to the representative individual’s 
expenditure distribution and calculate the out-of-pocket spending for each plan in each cell. 
Suppress the notation for each plan. Let 𝑖 denote the 𝑖-th smallest total expenditure cell, 𝑥" 
denote the total expenditure level in the cell, 𝑜" denote the out-of-pocket spending level. 
The goal is to construct a mapping from 𝑥" to 𝑜" for all cells. Let 𝑥!"  denote the expenditure 
amount for benefit 𝑠  in that cell, 𝑛!"  denote the utilization frequency of the benefit, 𝑐! 
denote the coinsurance rate, 𝑞!  denote the copayment amount, 𝑑  denote the deductible 
level, 𝑚 denotes the MOOP, and 𝑜!"  denote the out-of-pocket spending level in cell 𝑖. Let 
𝐺 denote the set of benefit subject to the deductible.  

Fix a cell 𝑖. If 𝑠 ∈ 𝐺, 𝑜!" = 𝑥!" . Otherwise, I apply the copay and coinsurance rules. If 
the benefit has coinsurance rate, 𝑜!" = 𝑐!𝑥!" . If the service has copays, 𝑜!" = 𝑛!"𝑞!. Among 
benefits subject to the deductible level, calculate the total amount subject to the deductible 
level: 𝑔" = ∑ 𝑥!@G .	Examine whether 𝑔"  succeeds the deductible level. If 𝑔" > 𝑑 , then 
allocate 𝑔" − 𝑑 among all services subject to the deductible level proportionally to 𝑥!" , and 
then apply the copay and coinsurance rules. Next, check if 𝑜" ≥ 𝑚. If so, then replace 𝑜" =
𝑚.  

The result is the discrete version of the out-of-pocket spending distribution, 
{𝑜" , 𝑝"|

"H#,@,…,KL
, for each plan 𝑖. 
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Step 2. Specifying the Utility Function. 
In the calculation, I assume a CARA utility function with a risk-averse coefficient of 

0.0004. I assume the risk aversion coefficient is 0.0004, the median and mean estimated by 
Handel (2013.) Under the CARA utility function, 𝑤 is irrelevant.  
Step 3. Calculating Risk Premiums 

Given 𝑎~𝐻(⋅)  and 𝑢(⋅) , I plug in them into 𝐸[𝑢(𝑤 − 𝑎)] = 𝑢	(𝑤 − 𝐸(𝑎) − 𝑅)  to 
calculate 𝑅 for each plan. 
 
Appendix E. Calibration Details. 
Step 1. Create Simplified Three-Arm Designs of ACA Plans 

For each plan in the ACA market, I observe its deductible, MOOP, and cost-sharing 
rules for different benefits. The design of a plan is rather complicated because it involves 
cost-sharing rules for many different benefits. To make computation tractable and 
consistent with the theoretical analysis, I convert each plan’s cost-sharing rules into a 
simplified three-arm design (Ericson et al., 2019; Liu and Sydnor, 2022).  

Define a plan design as a mapping from total medical expenditure level to the out-of-
pocket spending: 𝑔: 𝑥 → 𝑅#$. The simplified plan design is a piece-wise linear version of 
this function. The design contains three legs: a leg before the deductible level, a leg after 
hitting the deductible and before the MOOP, and a flat leg after hitting the MOOP. The 
design is represented by four parameters: the deductible level 𝑑,  the MOOP, 𝑚 , the 
coinsurance rate before the deductible, 𝑐@, and the coinsurance rate after the deductible and 
before the MOOP, 𝑐A.19 The simplified design of a plan has the same fraction of losses 
covered for the average consumer in the ACA market for each leg as the original design. 

I take the stochastic out-of-pocket spending distribution implied by each plan estimated 
in Appendix D Step 1. I then construct the simplified plan design by calculating the four 
parameters. The deductible and MOOP are directly observed in the data using the first-tier 
in-network values for single coverage.20 Define two related values: the expenditure level 
when hitting the deductible, 𝑙@ , and the expenditure level when hitting the MOOP, 𝑙A. 
Given {𝑥" , 𝑜"|

"H#,@,…,KL
, calculate 𝑙@	as the smallest expenditure level such that the out-of-

pocket expenditure succeeds the deductible: 𝑙@ = 𝑎𝑟𝑔𝑚𝑖𝑛M'{𝑜
" − 𝑑: 𝑜" ≥ 𝑑}. 𝑙A  is 

calculated as the smallest expenditure level such that the out-of-pocket expenditure 
succeeds the MOOP: 𝑙A = 𝑎𝑟𝑔𝑚𝑖𝑛M'{𝑜

" −𝑚: 𝑜" ≥ 𝑑}. Given 𝑙@  and 𝑙A , I then calculate 
𝑐@ = 𝑑/𝑙@, 𝑐A = (𝑚 − 𝑑)/(𝑙A − 𝑙@).  

Under the three-arm design, each plan design 𝑓 is defined as: 

𝑔(𝑥) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑐@𝑥, 𝑖𝑓	𝑥 ≤

𝑑
𝑐@
.

𝑑 + 𝑐A(𝑥 − 𝑑), 𝑖𝑓
𝑑
𝑐@
< 𝑥 ≤

𝑚 − 𝑑
𝑐A

+
𝑑
𝑐@
	

𝑚,					𝑖𝑓	𝑥 >
𝑚 − 𝑑
𝑐A

+
𝑑
𝑐@

 

 
19 In the ACA, all plans are required to have a MOOP, and plans offer full coverage on covered benefits after 
the cumulative out-of-pocket spending succeeds the MOOP. Some plans have certain benefits covered even 
before hitting the deductible level, thus I allow a coinsurance rate before the deductible level. 
20 Some plans have separate deductible or MOOP for drugs and medical services. I aggregate them into a 
single value. 
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Step 2. Create individual types 
I create 100 risk types estimated using the Truven MarketScan data using the k-means 

clustering method in Appendix B. I scaled up the parameters such that the average market 
risk is the same as the 2017 ACA average level (obtained from the AV Calculator).  

In the simulation, each market is a county. Let 𝑚 denote each market. I assume that all 
counties have the same risk distributions. In each county, for each risk type, I then create 
five subtypes, representing consumers facing non-CSR plans and no premium subsidy, 
non-CSR plans and premium subsidy, and both (3 CSR plan types). This implicitly assumes 
that the medical expenditure risk is independent of income level. I use the 2016 CSR total 
enrollment share and premium subsidy share to get the relative weights of each type in a 
county. This is the only year where such data are available. I also use the 2017 county-
level average premium subsidy and assume that it is the subsidy received by those eligible 
for premium subsidy. When aggregating to the national level, each county is weighted by 
the overall ACA enrollment share in 2017. The sub-types face different choice sets (the 
CSR population can choose the CSR-variation Silver plans instead of Standard Silver plans) 
and different net premiums.  

Finally, consumers are assumed to have a CARA utility function with a risk aversion 
coefficient of 0.0004, the average and median value estimated by Handel (2013). 
Step 3. Create the choice sets and premiums 

I get the plans launched in each county in 2017 and fix them as the baseline. Let 𝐶N,@ 
denote the sets of plans available in county 𝑚. For each plan in 𝐶N,@, create a counterfactual 
plan with the same AV and has a straight-deductible design. The AVs are evaluated using 
the CMS 2017 AV Calculator distribution as in Step 1. Let 𝐶N,A denote the collection of 
plans. 

For all plan 𝑗 in both sets of plans, I calculate the expected covered losses to risk type 
𝑖, 𝜏". using the simplified three-arm design. I then calculate the premium 𝑝. as the perfectly 
competitive, perfect risk adjusted premium with a loading factor of 𝜃: 

𝑝. = 𝜃C𝜏".𝑤"
"

, 

where 𝑤"  is the weight of each type, 𝜏".  is the expected covered losses. In the baseline 
simulation, I set 𝜃 = 1.2, the value is implied from the medical loss ratio regulation. The 
formula is only applied to non-CSR plans. By regulations, the cost-sharing reduction 
variation plans have the same premium as the associated non-CSR Silver plans. Further, I 
calculate 𝜏". as 

𝜏". = ∫ h𝑥 − 𝑔.(𝑥)i 𝑑𝐹" , 
where 𝑔.(𝑥)  is plan 𝑗 ’s three-arm design estimated in step 1, 𝑥 ∼ 𝐹"  is individual 𝑖 ’s 
shifted log-normal distribution estimated in step 2.  

The net premium, 𝑝"., for individuals eligible for the premium subsidy 𝑖 is 
𝑝". = 𝑝. − 𝑠" , 

where 𝑠" is the subsidy level, varies at the county level. 
Step 4. Calculate the chosen plan and welfare 

Consumers are modeled as expected utility maximizers choosing plans based on the 
perceived utility:  
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𝑣". = ∫ 𝑢O−𝑔.(𝑥) − 𝑝".Q𝑑𝐹"(𝑥)\]]]]]]]^]]]]]]]_
/0-,120320-0415)	7)"-")8

+ 𝛽𝜖".bcccccccccdccccccccce
90:"!";5	7)"-")8

. 

The deterministic part, ∫ 𝑢O−𝑔.(𝑥) − 𝑝.Q𝑑𝐹", is a function of the out-of-pocket spending, 
𝑔.(𝑥), and net premium, 𝑝".. It determines the welfare-relevant value of each plan 𝑗 for 
individual 𝑖. The second component of the choice utility is an error component, 𝜖"., that is 
assumed to be i.i.d following the extreme value type one distribution. It affects the choice 
of each consumer but is not relevant to welfare. The larger the scaling parameter 𝛽, the 
more randomness there will be in plan choice. 𝛽 = 0  represents the case where all 
consumers choose optimally. 

Under CARA, 𝑣". = ∫ 𝑢O−𝑔.(𝑥)Q𝑑𝐹"(𝑥) − 𝑝". + 𝛽𝜖". .  ∫ 𝑢O−𝑔.(𝑥)Q𝑑𝐹"(𝑥)  is 
calculated using the CARA utility functional form and the shifted log-normal distributions. 
I vary 𝛽 from 0 to some very large positive number.  

Consumers choose the plan maximizing 𝑣". . Let 𝑗"∗(𝛽)  denote the plan chosen by 
individual 𝑖 under 𝛽. Define 𝑡"(𝛽) = ∫ 𝑢 h−𝑔.'∗(>)(𝑥)i 𝑑𝐹"(𝑥). The total efficiency of the 
market under 𝛽	is calculated as  

𝑠𝑠(𝛽) =CC𝑤"(𝑡"(𝛽) − 𝜃𝜏".'∗(>))
"∈::

. 

where 𝑖 ∈ 𝑐 indicates individuals in county 𝑐, and 𝑤" are population weights of type 𝑖 in 
county 𝑐 , as a fraction of the total population. 	𝜏".'∗(>)  is the social costs of providing 
insurance 𝑗"∗(𝛽) to individual 𝑖.  

The consumer surplus of individual 𝑖 under 𝛽 is: 
𝑐𝑠"(𝛽) = 𝑡"(𝛽) − 𝑝".'∗(>). 

Appendix Table E1 summarizes the parameters used in the calibration and the source 
of data: 

Appendix Table E1. Summary of Parameters 
Calibration 
parameters Meaning Source 

𝑢" 

Individuals’ utility 
function. Assumed to 
be CARA and identical 
for all individuals 

The risk aversion coefficient is from 
Handel (2013) 

𝐹" Loss distributions 
Estimated from Truven Market Scan data 
and scaled to match the 2017 ACA 
average 

𝑔. 
Plan design, a mapping 
from total loss to out-
of-pocket spending 

Estimated from the ACA data 

𝐶N,@ Choice set of county 𝑚 Obtained from the ACA data 

𝐶N,A Counterfactual choice 
set of county 𝑚 Created by the author 

𝜃 Loading factor Assumed to be 1.2 

𝑤" 
Population weights of 
each individual Obtained from the ACA data 
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𝑠" Premium subsidies Obtained from the ACA data 

𝛽 The standard deviation 
of the error term Varies by the author 

 
 
 


